Telegram Group & Telegram Channel
Почему свёрточные нейросети оказались лучше обычных (MLP, например) именно в задачах классификации изображений?

🔹Количество параметров

Представим, что вы решили использовать обычную многослойную сеть с кросс-энтропией для классификации изображений, предварительно развернув каждую картинку в вектор. В таком случае, количество параметров в первом слое будет зависеть от размерности вектора (например, 1920x1080) и числа нейронов. Если количество нейронов слишком мало, мы рискуем потерять важную информацию.

Свёрточные нейросети предлагают решение этой проблемы. Их архитектура позволяет значительно сократить количество параметров за счёт использования свёрток и пулинговых слоёв. Это не только уменьшает сложность модели, но и помогает сохранять важные характеристики изображений.

🔹Структура данных

Обычная многослойная нейронная сеть должна справляться с инвариантностью к различным преобразованиям изображений, таким как повороты и сдвиги. Это достигается увеличением числа нейронов в скрытых слоях, что нежелательно с точки зрения вычислительных ресурсов и риска переобучения.

Свёрточные нейросети, благодаря своей структуре, автоматически учитывают локальные паттерны в изображениях и могут обрабатывать данные иерархически. Это означает, что CNN способны выделять важные признаки на разных уровнях абстракции, что улучшает обобщающую способность модели и её устойчивость к трансформациям.

#глубокое_обучение



tg-me.com/ds_interview_lib/603
Create:
Last Update:

Почему свёрточные нейросети оказались лучше обычных (MLP, например) именно в задачах классификации изображений?

🔹Количество параметров

Представим, что вы решили использовать обычную многослойную сеть с кросс-энтропией для классификации изображений, предварительно развернув каждую картинку в вектор. В таком случае, количество параметров в первом слое будет зависеть от размерности вектора (например, 1920x1080) и числа нейронов. Если количество нейронов слишком мало, мы рискуем потерять важную информацию.

Свёрточные нейросети предлагают решение этой проблемы. Их архитектура позволяет значительно сократить количество параметров за счёт использования свёрток и пулинговых слоёв. Это не только уменьшает сложность модели, но и помогает сохранять важные характеристики изображений.

🔹Структура данных

Обычная многослойная нейронная сеть должна справляться с инвариантностью к различным преобразованиям изображений, таким как повороты и сдвиги. Это достигается увеличением числа нейронов в скрытых слоях, что нежелательно с точки зрения вычислительных ресурсов и риска переобучения.

Свёрточные нейросети, благодаря своей структуре, автоматически учитывают локальные паттерны в изображениях и могут обрабатывать данные иерархически. Это означает, что CNN способны выделять важные признаки на разных уровнях абстракции, что улучшает обобщающую способность модели и её устойчивость к трансформациям.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/603

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA